Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# Bis(2-methylimidazolium) hydroxodiphosphatoaluminium 

Junya Takashima, ${ }^{\text {a }}$ Kazumasa Sugiyama, ${ }^{\text {a* }}$ Tokuhei Tagai, ${ }^{\text {b }}$ Osamu Terasaki ${ }^{\text {c }}$ and Jihong Yu ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan, ${ }^{\text {b }}$ University Musium, The University of Tokyo, Tokyo 113-0033, Japan, ${ }^{\mathbf{c}}$ Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and ${ }^{\mathbf{d}}$ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130023, People's Republic of China<br>Correspondence e-mail: kazumasa@eps.s.u-tokyo.ac.jp

Received 22 April 2004
Accepted 17 May 2004
Online 22 June 2004
The title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{AlP}_{2} \mathrm{O}_{7}(\mathrm{OH})\right]$, is a onedimensional extended-chain aluminophosphate prepared by a solvothermal synthesis from an alcohol system. The infinite $\left[\mathrm{AlP}_{2} \mathrm{O}_{7}(\mathrm{OH})\right]^{2-}$ chains composed of $\mathrm{AlO}_{4}, \mathrm{PO}_{2}(=\mathrm{O})_{2}$ and $\mathrm{PO}_{2}(=\mathrm{O})(\mathrm{OH})$ tetrahedra are linked via hydrogen bonds to the 2-methylimidazolium cations.

## Comment

Recent studies of the synthesis of crystalline aluminophosphates have revealed the diversity of their topology (e.g. Yu et al., 2001). Such crystalline aluminophosphates are classified into one-, two- and three-dimensional structural groups according to the way in which the coordination polyhedra around the Al and P atoms are linked. An infinite onedimensional polyhedral chain composed of corner-shared four-membered rings is one of the common structural units found in a variety of one-dimensional aluminophosphates. $\left[\mathrm{NH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{3}\right]\left(\mathrm{H}_{3} \mathrm{O}\right)\left[\mathrm{AlP}_{2} \mathrm{O}_{8}\right]$ (Wang et al., 1990), $\left[\mathrm{CH}_{3}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}_{3}\right]\left[\mathrm{AlP}_{2} \mathrm{O}_{6}(\mathrm{OH})_{2}\right]$ (Jones et al., 1990), $\left[\mathrm{NH}_{3}\left(\mathrm{CH}_{2}\right)_{2}-\right.$ $\left.\mathrm{NH}_{3}\right]\left(\mathrm{NH}_{4}\right)\left[\mathrm{AlP}_{2} \mathrm{O}_{8}\right]$ (Gao et al., 1996) and $\left[\mathrm{NH}_{3}\left(\mathrm{CH}_{2}\right)_{2}-\right.$ $\left.\mathrm{NH}_{3}\right]_{0.5}\left[\mathrm{NH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{3}\right]_{0.5}\left[\mathrm{AlP}_{2} \mathrm{O}_{8}\right]$ (Sugiyama et al., 1999) are included in this category. The title compound, $\left(\mathrm{CH}_{3}-\right.$ $\left.\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{AlP}_{2} \mathrm{O}_{7}(\mathrm{OH})\right]$, (I), is another example of this structural group, as well as the first example with a cyclic amine template.

(I)

The structure of $(\mathrm{I})$ is composed of $\mathrm{Al3O}_{4}, \mathrm{P1O}_{2}(=\mathrm{O})_{2}$ and $\mathrm{P} 2 \mathrm{O}_{2}(=\mathrm{O})(\mathrm{OH})$ tetrahedra, forming infinite one-dimensional $\left[\mathrm{AlP}_{2} \mathrm{O}_{7}(\mathrm{OH})\right]^{2-}$ chains (Fig. 1 and Table 1). These chains run


Figure 1
The crystal structure of (I). The $\mathrm{AlO}_{4}$ and $\mathrm{PO}_{4}$ tetrahedra are shown in white and gray, respectively. Aliphatic H atoms have been omitted for clarity. [Symmetry code: (i) $1-x, 1-y, 1-z$.]
parallel to the $a$ axis and are joined together along the $b$ and $c$ axes by the 2-methylimidazolium cations. The $\mathrm{Al3O}_{4}$ tetrahedra share four O atoms with the ${\mathrm{P} 1 \mathrm{O}_{2}(=\mathrm{O})_{2} \text { and }}^{2}$ $\mathrm{P}_{2} \mathrm{O}_{2}(=\mathrm{O})(\mathrm{OH})$ tetrahedra, with $\mathrm{Al} 3-\mathrm{O}$ distances ranging from $1.723(2)$ to $1.745(2) \AA$. The $\mathrm{P}_{2} \mathrm{O}_{2}(=\mathrm{O})_{2}$ and $\mathrm{P}_{2} \mathrm{O}_{2}(=\mathrm{O})(\mathrm{OH})$ tetrahedra each share two O atoms with the $\mathrm{Al3O}_{4}$ tetrahedra, and the short $\mathrm{P}-\mathrm{O}$ distances to the terminal O atoms $[\mathrm{P} 1-\mathrm{O} 1=1.507(2) \AA, \mathrm{P} 1-\mathrm{O} 2=1.523(2) \AA$ and $\mathrm{P} 2-\mathrm{O} 5=1.481(2) \AA$ ] suggest their double-bond character. The longest $\mathrm{P}-\mathrm{O}$ distance $[\mathrm{P} 2-\mathrm{O} 8=1.565(2) \AA]$ indicates the nature of the terminal hydroxy group. Hydrogen bonds (Table 2) are found between atoms N11, N13, N21 and N 23 of the protonated 2-methylimidozole group and the three terminal atoms $\mathrm{O} 1, \mathrm{O} 2$ and O 5 . The $\mathrm{O} 8-\mathrm{H} 8$ hydroxy group also forms hydrogen bonds with terminal atom O2. The present study offers a limited discussion of the bond distances for $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ pairs; nevertheless, the configuration obtained is enough to confirm the geometry of the protonated 2-methylimidazole group, including the hydrogen bonding in the title compound.

## Experimental

Aluminium triisopropoxide ( 1.0 g ) was dispersed in triethylene glycol $(8 \mathrm{ml})$ with stirring, and then 2-methylimidazole ( 2.02 g ) was added to form a slurry. $\mathrm{H}_{3} \mathrm{PO}_{4}(2.04 \mathrm{ml}, 85 \mathrm{wt} \%)$ was added dropwise to the above reaction mixture. The resulting gel was sealed in a Teflon-lined stainless steel autoclave and heated at 453 K for 4 d . The resulting crystals of (I) were washed with distilled water and dried at 323 K . In order to compensate the negative charge of the infinite $\left[\mathrm{AlP}_{2} \mathrm{O}_{7}(\mathrm{OH})\right]^{2-}$ chains, the template agent is suggested to be protonated. The total weight loss of $48.9 \%$ from 353 to 1073 K , observed by thermogravimetric analysis, corresponds to the calculated weight fraction for $2 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}(49.8 \%)$.

## Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{AlP}_{2} \mathrm{O}_{7}(\mathrm{OH})\right]$
$M_{r}=384.16$
Triclinic, $P \overline{1}$
$a=8.4789$ (17) £
$b=9.5233$ (11) $\AA$
$c=10.3607$ (17) A
$\alpha=108.811$ (9) ${ }^{\circ}$
$\beta=92.172(13)^{\circ}$
$\gamma=105.561(13)^{\circ}$
$V=755.8(2) \AA^{3}$
$Z=2$
$D_{x}=1.688 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Rigaku AFC-7R diffractometer
$\omega-2 \theta$ scans
Absorption correction: $\psi$ scan (North et al., 1968)
$T_{\text {min }}=0.929, T_{\text {max }}=0.980$
4693 measured reflections
4417 independent reflections
3125 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.130$
$S=1.03$
4417 reflections
209 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=14.3-19.3^{\circ}$
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Elongated prism, colorless
$0.20 \times 0.07 \times 0.04 \mathrm{~mm}$

The hydroxy H atom in the infinite chain was positioned from a difference Fourier map $(\mathrm{O}-\mathrm{H}=0.91 \AA$ ) and the remaining aliphatic H atoms were placed in idealized positions ( $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ ). All H atoms were constrained to ride on their parent atoms. Isotropic displacement parameters for all H atoms were assumed to be equal and were refined $\left[U_{\text {iso }}(H)=0.072(4) \AA^{2}\right]$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: SHELXL97 (Sheldrick, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97; molecular graphics: ATOMS (Dowty, 1997); software used to prepare material for publication: SHELXL97.

This study was supported financially by Nippon Sheet Glass Foundation for Material Science and by a Grant-in-Aid for Scientific Research (B) (grant No. 14340161) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Table 1
Selected interatomic distances $(\AA)$.

| P1-O1 | 1.507 (2) | N11-C12 | 1.337 (4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{P} 1-\mathrm{O} 2$ | 1.523 (2) | N11-C15 | 1.380 (4) |
| P1-O4 | 1.544 (2) | C12-N13 | 1.329 (4) |
| P1-O3 | 1.558 (2) | C12-C16 | 1.476 (4) |
| P2-O5 | 1.481 (2) | N13-C14 | 1.370 (4) |
| P2-O6 | 1.535 (2) | C14-C15 | 1.352 (4) |
| P2-O7 | 1.543 (2) | N21-C22 | 1.324 (4) |
| P2-O8 | 1.565 (2) | N21-C25 | 1.373 (4) |
| $\mathrm{Al} 3-\mathrm{O} 4$ | 1.723 (2) | C22-N23 | 1.334 (4) |
| $\mathrm{Al} 3-\mathrm{O}^{\text {ii }}$ | 1.732 (2) | C22-C26 | 1.475 (5) |
| $\mathrm{Al} 3-\mathrm{O} 3{ }^{\text {iii }}$ | 1.736 (2) | N23-C24 | 1.381 (5) |
| $\mathrm{Al3}-\mathrm{O} 7$ | 1.745 (2) | C24-C25 | 1.346 (5) |

Symmetry codes: (ii) $2-x,-y, 1-z$; (iii) $1-x,-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 2^{\text {iii }}$ | 0.91 | 1.66 | 2.563 (3) | 169 |
| $\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{O} 1^{\text {iv }}$ | 0.86 | 1.86 | 2.711 (3) | 169 |
| N13-H13 . O5 | 0.86 | 1.81 | 2.650 (3) | 166 |
| $\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{O} 1$ | 0.86 | 1.88 | 2.728 (3) | 169 |
| $\mathrm{N} 23-\mathrm{H} 23 \cdots \mathrm{O}{ }^{\text {v }}$ | 0.86 | 1.89 | 2.740 (3) | 168 |

Symmetry codes: (iii) $1-x,-y, 1-z$; (iv) $x, y, z-1$; (v) $x, 1+y, z$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1178). Services for accessing these data are described at the back of the journal.

## References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Dowty, E. (1997). ATOMS. Version 4.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA. (URL: http://www.shapesoftware.com.)
Gao, Q., Chen, J., Li, S., Xu, R., Thomas, J. M., Light, M. \& Hursthouse, M. B. (1996). J. Solid State Chem. 127, 145-150.

Jones, R. H., Thomas, J. M., Xu, R., Huo, Q., Xu, Y., Cheethman, A. K. \& Bieber, D. (1990). J. Chem. Soc. Chem. Commun. pp. 1170-1172.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sugiyama, K., Hiraga, K., Yu, J., Zheng, S., Qiu, S., Xu, R. \& Terasaki, O. (1999). Acta Cryst. C55, 1615-1617.

Wang, T., Yu, L. \& Pang, W. (1990). J. Solid State Chem. 89, 2392-2395.
Yu, J., Li, J. \& Xu, R. (2001). Microporous Mesoporous Mater. 48, 47-56.

