Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Bis(2-methylimidazolium) hydroxodiphosphatoaluminium

Junya Takashima,^a Kazumasa Sugiyama,^a* Tokuhei Tagai,^b Osamu Terasaki^c and Jihong Yu^d

^aDepartment of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan, ^bUniversity Musium, The University of Tokyo, Tokyo 113-0033, Japan, ^cDepartment of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and ^dState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130023, People's Republic of China

Correspondence e-mail: kazumasa@eps.s.u-tokyo.ac.jp

Received 22 April 2004 Accepted 17 May 2004 Online 22 June 2004

The title compound, $(C_4H_7N_2)_2[AlP_2O_7(OH)]$, is a onedimensional extended-chain aluminophosphate prepared by a solvothermal synthesis from an alcohol system. The infinite $[AlP_2O_7(OH)]^{2-}$ chains composed of AlO_4 , $PO_2(=O)_2$ and $PO_2(=O)(OH)$ tetrahedra are linked *via* hydrogen bonds to the 2-methylimidazolium cations.

Comment

Recent studies of the synthesis of crystalline aluminophosphates have revealed the diversity of their topology (e.g. Yu et al., 2001). Such crystalline aluminophosphates are classified into one-, two- and three-dimensional structural groups according to the way in which the coordination polyhedra around the Al and P atoms are linked. An infinite onedimensional polyhedral chain composed of corner-shared four-membered rings is one of the common structural units found in a variety of one-dimensional aluminophosphates. [NH₃(CH₂)₂NH₃](H₃O)[AlP₂O₈] (Wang et al., 1990), [CH₃-(CH₂)₅NH₃][AlP₂O₆(OH)₂] (Jones et al., 1990), [NH₃(CH₂)₂- NH_3 (NH_4) [AlP_2O_8] (Gao et al., 1996) and [NH_3 (CH_2)₂-NH₃]_{0.5}[NH₃(CH₂)₃NH₃]_{0.5}[AlP₂O₈] (Sugiyama et al., 1999) are included in this category. The title compound, (CH₃- $C_{3}H_{4}N_{2})_{2}[AlP_{2}O_{7}(OH)]$, (I), is another example of this structural group, as well as the first example with a cyclic amine template.

The structure of (I) is composed of Al3O₄, P1O₂(=O)₂ and P2O₂(=O)(OH) tetrahedra, forming infinite one-dimensional [AlP₂O₇(OH)]²⁻ chains (Fig. 1 and Table 1). These chains run

Figure 1

The crystal structure of (I). The AlO₄ and PO₄ tetrahedra are shown in white and gray, respectively. Aliphatic H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

parallel to the *a* axis and are joined together along the *b* and *c* axes by the 2-methylimidazolium cations. The Al3O₄ tetrahedra share four O atoms with the $P1O_2(=O)_2$ and $P2O_2(=O)(OH)$ tetrahedra, with Al3–O distances ranging from 1.723 (2) to 1.745 (2) Å. The $P1O_2(=O)_2$ and $P2O_2(=O)(OH)$ tetrahedra each share two O atoms with the Al3O₄ tetrahedra, and the short P-O distances to the terminal O atoms [P1-O1 = 1.507 (2) Å, P1-O2 = 1.523 (2) Åand P2-O5 = 1.481(2) Å] suggest their double-bond character. The longest P–O distance [P2-O8 = 1.565 (2) Å]indicates the nature of the terminal hydroxy group. Hydrogen bonds (Table 2) are found between atoms N11, N13, N21 and N23 of the protonated 2-methylimidozole group and the three terminal atoms O1, O2 and O5. The O8-H8 hydroxy group also forms hydrogen bonds with terminal atom O2. The present study offers a limited discussion of the bond distances for C-C and C-N pairs; nevertheless, the configuration obtained is enough to confirm the geometry of the protonated 2-methylimidazole group, including the hydrogen bonding in the title compound.

Experimental

Aluminium triisopropoxide (1.0 g) was dispersed in triethylene glycol (8 ml) with stirring, and then 2-methylimidazole (2.02 g) was added to form a slurry. H₃PO₄ (2.04 ml, 85 wt%) was added dropwise to the above reaction mixture. The resulting gel was sealed in a Teflon-lined stainless steel autoclave and heated at 453 K for 4 d. The resulting crystals of (I) were washed with distilled water and dried at 323 K. In order to compensate the negative charge of the infinite $[AIP_2O_7(OH)]^{2-}$ chains, the template agent is suggested to be protonated. The total weight loss of 48.9% from 353 to 1073 K, observed by thermogravimetric analysis, corresponds to the calculated weight fraction for $2C_4H_6N_2 \cdot 1.5H_2O$ (49.8%).

metal-organic compounds

Crystal data

 $\begin{array}{l} ({\rm C}_4{\rm H}_7{\rm N}_2)_2[{\rm AlP}_2{\rm O}_7({\rm OH})] \\ M_r = 384.16 \\ {\rm Triclinic,} \ P{\rm I} \\ a = 8.4789 \ (17) \ {\rm \mathring{A}} \\ b = 9.5233 \ (11) \ {\rm \mathring{A}} \\ c = 10.3607 \ (17) \ {\rm \mathring{A}} \\ a = 108.811 \ (9)^\circ \\ \beta = 92.172 \ (13)^\circ \\ \gamma = 105.561 \ (13)^\circ \\ V = 755.8 \ (2) \ {\rm \mathring{A}}^3 \\ Z = 2 \\ D_x = 1.688 \ {\rm Mg \ m}^{-3} \end{array}$

Data collection

Rigaku AFC-7*R* diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.929, T_{\max} = 0.980$ 4693 measured reflections 4417 independent reflections 3125 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.130$ S = 1.034417 reflections 209 parameters H-atom parameters constrained Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 14.3-19.3^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 298 (2) KElongated prism, colorless $0.20 \times 0.07 \times 0.04 \text{ mm}$

 $\begin{aligned} R_{\text{int}} &= 0.043 \\ \theta_{\text{max}} &= 30.0^{\circ} \\ h &= -11 \rightarrow 0 \\ k &= -12 \rightarrow 13 \\ l &= -14 \rightarrow 14 \\ 3 \text{ standard reflections} \\ \text{every 50 reflections} \\ \text{intensity decay: none} \end{aligned}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0545P)^2 \\ &+ 0.3936P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &< 0.001 \\ \Delta\rho_{\text{max}} &= 0.43 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.54 \text{ e } \text{\AA}^{-3} \end{split}$$

The hydroxy H atom in the infinite chain was positioned from a difference Fourier map (O–H = 0.91 Å) and the remaining aliphatic H atoms were placed in idealized positions (C–H = 0.93 and 0.96 Å). All H atoms were constrained to ride on their parent atoms. Isotropic displacement parameters for all H atoms were assumed to be equal and were refined [U_{iso} (H) = 0.072 (4) Å²].

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1988); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *SHELXL*97 (Sheldrick, 1997); program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL*97; molecular graphics: *ATOMS* (Dowty, 1997); software used to prepare material for publication: *SHELXL*97.

This study was supported financially by Nippon Sheet Glass Foundation for Material Science and by a Grant-in-Aid for Scientific Research (B) (grant No. 14340161) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Table 1

Selected interatomic distances (Å).

P1-O1	1.507 (2)	N11-C12	1.337 (4)
P1-O2	1.523 (2)	N11-C15	1.380 (4)
P1-O4	1.544 (2)	C12-N13	1.329 (4)
P1-O3	1.558 (2)	C12-C16	1.476 (4)
P2-O5	1.481 (2)	N13-C14	1.370 (4)
P2-O6	1.535 (2)	C14-C15	1.352 (4)
P2-O7	1.543 (2)	N21-C22	1.324 (4)
P2-O8	1.565 (2)	N21-C25	1.373 (4)
Al3-O4	1.723 (2)	C22-N23	1.334 (4)
Al3–O6 ⁱⁱ	1.732 (2)	C22-C26	1.475 (5)
Al3–O3 ⁱⁱⁱ	1.736 (2)	N23-C24	1.381 (5)
Al3-07	1.745 (2)	C24-C25	1.346 (5)

Symmetry codes: (ii) 2 - x, -y, 1 - z; (iii) 1 - x, -y, 1 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
0.91	1.66	2,563 (3)	169
0.86	1.86	2.711 (3)	169
0.86	1.81	2.650 (3)	166
0.86	1.88	2.728 (3)	169
0.86	1.89	2.740 (3)	168
	<i>D</i> -H 0.91 0.86 0.86 0.86 0.86	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.91 & 1.66 \\ 0.86 & 1.86 \\ 0.86 & 1.81 \\ 0.86 & 1.88 \\ 0.86 & 1.89 \\ \hline \end{array}$	$D-H$ $H\cdots A$ $D\cdots A$ 0.91 1.66 2.563 (3) 0.86 1.86 2.711 (3) 0.86 1.81 2.650 (3) 0.86 1.88 2.728 (3) 0.86 1.89 2.740 (3)

Symmetry codes: (iii) 1 - x, -y, 1 - z; (iv) x, y, z - 1; (v) x, 1 + y, z.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1178). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Dowty, E. (1997). ATOMS. Version 4.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA. (URL: http://www.shapesoftware.com.)
- Gao, Q., Chen, J., Li, S., Xu, R., Thomas, J. M., Light, M. & Hursthouse, M. B. (1996). J. Solid State Chem. 127, 145–150.
- Jones, R. H., Thomas, J. M., Xu, R., Huo, Q., Xu, Y., Cheethman, A. K. & Bieber, D. (1990). J. Chem. Soc. Chem. Commun. pp. 1170–1172.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sugiyama, K., Hiraga, K., Yu, J., Zheng, S., Qiu, S., Xu, R. & Terasaki, O. (1999). Acta Cryst. C55, 1615–1617.
- Wang, T., Yu, L. & Pang, W. (1990). J. Solid State Chem. 89, 2392–2395.
- Yu, J., Li, J. & Xu, R. (2001). Microporous Mesoporous Mater. 48, 47-56.